

Phosphorus Heterocycles

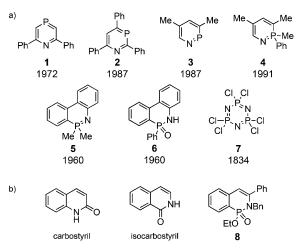
International Edition: DOI: 10.1002/anie.201507696 German Edition: DOI: 10.1002/ange.201507696

Facile Synthesis and Properties of $2-\lambda^5$ -Phosphaquinolines and $2-\lambda^5$ -Phosphaquinolin-2-ones

Chris L. Vonnegut, Airlia M. Shonkwiler, Muhammad M. Khalifa, Lev N. Zakharov, Darren W. Johnson,* and Michael M. Haley*

Abstract: Treatment of 2-ethynylanilines with $P(OPh)_3$ gives either 2,2-diphenoxy-2-λ⁵-phosphaquinolines or 2-phenoxy-2- λ^5 -phosphaquinolin-2-ones under transition-metal-free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the $N=P^V$ double bond and its potential for delocalization within a cyclic π -electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2-quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40%, Stokes shifts of 50-150 nm, and emission wavelengths of 380-540 nm. The phosphaquinolin-2-ones possess one of the strongest solution-state dimerization constants for a D-A system $(130 \,\mathrm{M}^{-1})$ owing to the close proximity of a strong acceptor (P=O) and a strong donor (phosphonamidate N-H), which suggests that they might hold promise as new hydrogen-bonding hosts for optoelectronic sensing.

he azaphosphinine scaffold has been explored as an analogue of hydrocarbon-based molecules for nearly half a century. The simplest six-membered ring systems, analogous to benzene, are comprised of three structural isomers: $1,4-\lambda^3$ azaphosphinine (1) was first made in 1972, [1] followed by the 1,3- (2) and 1,2- (3) λ^3 -azaphosphinine congeners in 1987 (Figure 1 a). [2] Until recently, nearly all azaphosphinines have featured phosphorus atoms formally in the +3 oxidation state, [3] except for one notable example, compound 4, which has phosphorus in the +5 oxidation state and was prepared in 1991.[4] The pioneering studies of Dewar and Campbell on 1,2azaphosphinines in the early 1960s, however, met with varying degrees of success.^[5] While Dewar was able to prepare the HI salt of 5, attempts by both groups to isolate the corresponding λ^3 -derivatives yielded unstable systems that required isolation as λ^5 -phosphonamidates such as **6**. While there have since been a handful of other investigations of 1,2-azaphosphinine


[*] C. L. Vonnegut, [*] A. M. Shonkwiler, [*] M. M. Khalifa, Prof. D. W. Johnson, Prof. M. M. Haley Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon Eugene, OR 97403-1253 (USA) E-mail: dwj@uoregon.edu

haley@uoregon.edu

Dr. L. N. Zakharov

CAMCOR—Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR 97403-1443 (USA)

- [+] These authors contributed equally to this work.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201507696.

Figure 1. a) Early examples of azaphosphinines. b) Carbostryril and isocarbostyril and their structural similarity to bioisosteres like phosphonamidate $\bf 8$.

structure and reactivity, the difficulty in synthesizing them has precluded rigorous investigations.^[6] On the other hand, examination of the fully inorganic variants has proceeded extensively, with cyclotriphosphazenes such as **7** being one of the most studied inorganic heterocycles.^[7] For example, the first cyclotriphosphazene was described in 1834 by Liebig, though the exact structure remained contested until the 1860s.^[8]

The choice of substituents on the phosphorous atom can significantly affect the stability and reactivity of the $1,2-\lambda^5$ -azaphosphinine scaffold. $P-C_{alkyl}$ and $P-C_{aryl}$ derivatives such as **4** and **5** are very sensitive to oxygen and water and decompose readily upon atmospheric exposure. On the other hand, $1,2-\lambda^5$ -azaphosphinines with alkoxy and phenoxy groups tend to hydrolyze from their phosphonimidate form (e.g., **4**, **5**) to the considerably more stable phosphonamidate form (e.g., **6**, **8**).

Phosphonates and their analogues have seen extensive use as transition-state mimics for ester and amide hydrolysis. For instance, compound **8** has been explored recently as a bioisostere of isocarbostyril^[9] and shows promise in pharmacological applications (Figure 1 b).^[10] In addition to the ability of phosphonates/phosphonamidates to act as ester and amide bioisosteres, these compounds have relevance for a number of other health-related uses.^[11] As a result, new efficient metalfree reactions to make phosphonate derivatives of common heterocyclic scaffolds, such as the quinolinone substructure, are highly desirable.^[12] Herein, we describe a simple synthesis

to assemble the 2-λ⁵-phosphaquinoline framework in a single step from easily attainable starting materials.

Reaction of P(OPh)₃ with 2-ethynylanilines 9a-j, which are accessible through Sonogashira cross-coupling of known alkynes with 2-iodoaniline, furnished phosphaquinolines 10 (the imidate form; Scheme 1) along with varying amounts of

Scheme 1. Synthesis of 2-phosphaquinolines and 2-phosphaquinolin-2-

phosphaquinolinones 11 (the amidate form), the latter of which arise from the partial hydrolysis of 10 by adventitious water during work-up and purification. The yields in Table 1

Table 1: Reaction scope and yields of isolated product for the azaphosphinine cyclization.

Entry	R	Yield (10)	Yield (11)
a	3,5-(CF ₃) ₂ Ph	_[a]	39%
b	4-CNPh	54%	79%
С	4-(CO ₂ Et)Ph	54%	74%
d	4-CIPh	_[a]	80%
е	Ph	45%	72%
f	4-MePh	63 %	82%
g	4-MeOPh	56%	66%
h	4-(NMe ₂)Ph	68%	_[a]
i	<i>n</i> -Pen	_[a]	73 %
j	2-pyridyl	71 %	31%

[a] Not isolable.

reflect our best efforts to rigorously exclude (10) or include (11) water as part of the overall sequence; nonetheless, 10 a, d, i were too labile to isolate purely as the phosphaguinoline. This cyclization is tolerant of a variety of electron-rich and electron-poor arenes, as well as alkyl functionality attached at the ethynyl group (Table 1, entry i). However, the reaction did not tolerate silyl-protected or terminal alkynes, and nor were ketones stable to the cyclization conditions owing to competing Kabachnik-Fields condensation, [13] all of which resulted in intractable polymers. Interestingly, ethyl ester derivative 10 c does not undergo a "traceless" Staudinger ligation.^[14] This and the general stability of the phosphonimidate toward hydrolysis at room temperature once purified lends credence to the idea of increased stability from electron delocalization within the heterocycle.

Single-crystal X-ray diffraction provided the solid-state structures of 10j (Figure 2) and 11j (Figure 3a), which allowed us to directly compare the imidate and amidate forms, respectively (Table S1).[15] The P-N bond in 10j (1.565 Å) is much shorter than the amidate P-N bond in 11j (1.635 Å) but is similar to the analogous bond in hexaphenoxycyclotriphosphazene (1.575 Å).[16] The imidate structure indicates some π -electron delocalization within the

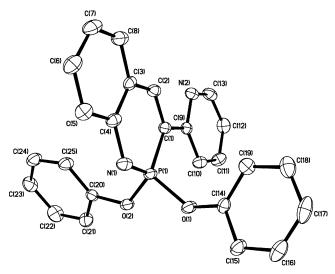
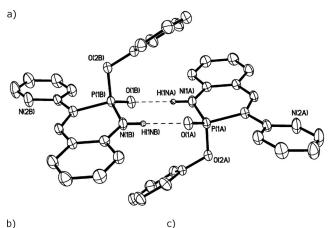



Figure 2. X-ray crystal structure of 10j.

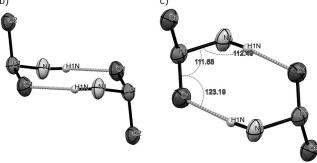
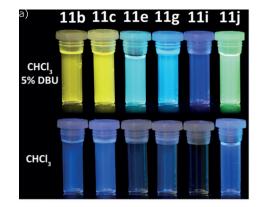


Figure 3. a) ORTEP of the dimer of 11 j. b) An angled view, with C atoms removed for clarity, shows the chair conformation of the Hbonding ring. c) A view from above the ring with relevant bond angles demonstrates their similarity to idealized chair-conformation angles.

heterocycle, with the C(1)=C(2) double bond length (1.367 Å) intermediate between that of benzene and an isolated double bond, whereas the same bond in 11 j (1.341 Å) is nearly identical in length to the corresponding bond in carbostyril (1.343 Å). [17] The azaphosphinine ring in $\mathbf{10j}$ shows only small deviations from planarity (RMSD 0.014 Å). Analysis of crystal structure and computational models (see the Supporting Information) indicates that the enhanced


13319

stability of **10j** to hydrolysis is likely due to coplanarity of pyridine and the azaphosphinine ring, held by a weak hydrogen bond between the hydrogen atom on C(2) and the pyridine nitrogen atom. This conformation limits water addition at phosphorus, since attack would likely occur 180° from the P=N bond. Phosphates hydrolyze via an associative mechanism, thus making a dissociative pathway unlikely. [18] Moreover, the S_N2-type displacement that is commonly found for alkyl phosphonates cannot occur with the phenyl substituents within **10**.

Interestingly, the amidate-type structures tend to crystallize as dimers between the two enantiomers, forming a complementary association between the N-H and P=O groups (Figure 3a), with correspondingly short intermolecular distances (N···O 2.837-2.840 Å in **11 j**) and nearly linear N-H···O angles (164-174°). This dimer formation is mirrored in solution, since compound 11b possesses a dimerization constant (K_{dim}) of $130 \pm 4 \,\text{M}^{-1}$ in CDCl₃. This corresponds to an energy of ca. 1.5 kcal mol⁻¹ per H bond, which is large compared to cis amides such as pyrrolidone or caprolactam, which show dimerization constants in the range $1-5 \,\mathrm{m}^{-1}$ in CHCl₃.^[19] Along with phosphonamidates possessing both a stronger hydrogen-bond acceptor (P=O vs. C=O) and a stronger hydrogen-bond donor (P(O)N-H vs. C(O)N-H) than amides, the non-coplanar arrangement of donor/ acceptor and lower directional preference of P = O donors allow the pseudo 6-membered ring to adopt a chair conformation and minimize repulsive secondary interactions (Figure 3b,c). [20] As a result, this dimer deviates from the trends noted by Schneider and Sartorius, where each attractive interaction gives $-1.88 \text{ kcal mol}^{-1}$ of energy to ΔG , and each repulsive secondary interaction gives +0.74 kcal mol⁻¹. [21] Following the same scheme, two repulsive secondary interactions in our dimer yield only $+0.76 \text{ kcal mol}^{-1}$ of destabilization, roughly half of what is expected.

The 2-phosphaquinolinone scaffold demonstrates a wide range of fluorescent emission wavelengths (383–554 nm), dependent on substitution and protonation state (Figure 4 and Table 2). The fluorescence behavior is similar to that of carbostyril, although somewhat red-shifted (3-phenylcarbostyril ex: 345 nm, em: 410 nm; **11e** ex: 354 nm, em: 427 nm). [22] Significant differences between the azaphosphinine and carbostyril include: 1) a more dramatic solvatofluorescent effect in azaphosphinines (11b CHCl₃ em: 430 nm, MeCN em: 450 nm, see the Supporting Information), and 2) an easily deprotonated amidate N-H, which yields a red-shifted fluorescent response, with the anion possessing a surprisingly large Stokes shift of 102-151 nm, depending upon substitution. Fluorophores possessing such a large Stokes shift are very useful owing to the lack of overlap between excitation and emission, thus lending promise for their use in imaging/sensing applications.^[23] In addition, although the more promising red-shifted derivatives of 11 possess only modest quantum yields (ca. 4-5%) the anions of those fluorophores show quantum yields in the range of 30-40%, thus demonstrating their potential for use as fluorescent tags, especially if the design principles for carbostyril fluorophore development were to be followed to further red-shift emission and increase the quantum yield. [24]

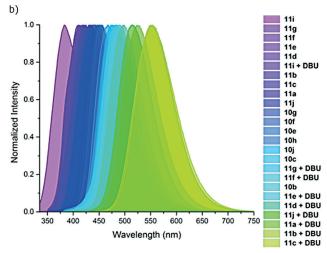


Figure 4. a) Images of the fluorescence of 2-phosphaquinolin-2-ones under neutral and basic conditions. b) Graphical depiction of the differing emissions of 2-phosphaquinolines and 2-phosphaquinolin-2-ones in CHCl₃ and upon the addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), demonstrating the emission range from UV to yellow.

Table 2: Fluorescence properties of compounds 10, 11, and deprotonated 11. [a]

Entry	10	11	11 + DBU
a	_	434, 85	523, 128
Ь	483, 83	430, 81, 4%	554, 137, 41%
С	473, 90	432, 81, 5%	553, 151, 31%
d	_	422, 63	499, 126
е	453, 80	418, 76	491, 127
f	450, 81	413, 72	482, 114
g	447, 78	410, 71	473, 107
h	454, 85	_	_
i	_	383, 65	425, 102
j	467, 79	442, 79	514, 102

[a] Each entry is listed with the emission maximum, Stokes shift (nm), and photoluminescent quantum yield (if present), in that order.

In summary, we present a facile synthesis of $2-\lambda^5$ -phosphaquinoline derivatives from 2-ethynylanilines. The ease of preparation and the range of diverse structures that can be readily accessed will permit detailed examination of this rare class of heterocycles, from the fundamental perspective of the study of the delocalization of N=P^V bonds to

applications of the phosphaquinolinones as carbostyril mimics and as novel switchable fluorophores with high quantum yields and large Stokes shifts in the ON state. In addition, the surprisingly large dimerization constant of 11 b, a system bound by only two hydrogen bonds, hints at potential for the phosphaquinolinones as new hydrogen-bonding scaffolds in supramolecular chemistry. Our group is currently working to expand upon these varied and exciting applications.

Acknowledgements

This work was supported by NIH grant R01-GM087398, which also funded early stage intellectual property that was licensed by SupraSensor Technologies, a company co-founded by the principal investigators. The authors acknowledge the Biomolecular Mass Spectrometry Core of the Environmental Health Sciences Core Center at Oregon State University (NIH P30ES000210).

Keywords: alkynes · dimerization · fluorescent probes · phosphazenes · phosphorus heterocycles

How to cite: Angew. Chem. Int. Ed. **2015**, 54, 13318–13322 Angew. Chem. **2015**, 127, 13516–13520

- [1] G. Märkl, D. Matthes, Angew. Chem. Int. Ed. Engl. 1972, 11, 1019–1020; Angew. Chem. 1972, 84, 1069–1070.
- [2] a) G. Märkl, G. Dorfmeister, Tetrahedron Lett. 1987, 28, 1093 –
 1096; b) C. Bourdieu, A. Foucaud, Tetrahedron Lett. 1987, 28, 4673 4674.
- [3] "Product Class 13: 1-λ³-Phosphinines": F. Mathey, P. le Floch in *Science of Synthesis*, Vol. 15 (Ed.: D. StC. Black) Georg Thieme, Stuttgart, 2005, pp. 1097 1155.
- [4] C. Bedel, A. Foucaud, Tetrahedron Lett. 1991, 32, 2619-2620.
- [5] a) M. J. S. Dewar, V. P. Kubba, J. Am. Chem. Soc. 1960, 82, 5685 5688; b) I. G. M. Campbell, J. K. Way, J. Chem. Soc. 1960, 5034 5041; c) I. G. M. Campbell, J. K. Way, J. Chem. Soc. 1961, 2133 2141.
- [6] Examples include: a) T. Kobayashi, M. Nitta, Chem. Lett. 1985, 14, 1459-1462; b) N. G. Khusainova, Z. A. Bredikhina, A. D. Sinitsa, V. I. Kal'chenko, A. N. Pudovik, J. Gen. Chem. USSR Engl. Transl. 1982, 52, 789-795; c) Z. A. Bredikhina, N. G. Khusainova, Y. Y. Efremov, R. L. Korshunov, A. N. Pudovik, J. Gen. Chem. USSR. Engl. Transl. 1985, 55, 1710-1718; d) G. Veneziani, R. Reau, F. Dahan, G. Bertrand, J. Org. Chem. 1994, 59, 5927-5929; e) A. Foucaud, C. Bedel, Tetrahedron 1995, 51, 9625-9632; f) A. D. Averin, N. V. Lukashev, A. A. Borisenko, M. A. Kazankova, I. P. Beletskaya, Russ. J. Org. Chem. 1996, 32, 415-426; g) M. Nitta, H. Yamamoto, T. Kobayashi, Heterocycles 1998, 48, 1903; h) Y. V. Svyaschenko, D. M. Volochnyuk, A. N. Kostyuk, Tetrahedron Lett. 2010, 51, 6316-6318; i) D. Aguilar, R. Bielsa, T. Soler, E. P. Urriolabeitia, Organometallics 2011, 30, 642-648; j) N. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978-11979.
- [7] Examples include: a) B. Dishon, J. Am. Chem. Soc. 1949, 71, 2251–2251; b) M. J. S. Dewar, E. C. Lucken, M. A. Whitehead, J. Chem. Soc. 1960, 2423–2429; c) L. Nyulászi, Chem. Rev. 2001, 101, 1229–1246; d) A. B. Chaplin, J. A. Harrison, P. J. Dyson, Inorg. Chem. 2005, 44, 8407–8417; e) J. J. Torres-Vega, A. Vásquez-Espinal, J. Caballero, M. L. Valenzuela, L. Alvarez-Thon, E. Osorio, W. Tiznado, Inorg. Chem. 2014, 53, 3579–3585.

- [8] a) J. H. Gladstone, J. D. Holmes, J. Chem. Soc. 1864, 17, 225 237; b) J. Liebig, F. Woehler, Justus Liebigs Ann. Chem. 1834, 11, 139 150.
- [9] Carbostyril and isocarbostyril are the long-standing common names of 2(1H)-quinolinone and 1(2H)-isoquinolinone, respectively, and are still used frequently in the pharmacological and fluorophore literature.
- [10] Examples include: a) W. Tang, Y. X. Ding, J. Org. Chem. 2006, 71, 8489-8492; b) W. Tang, Y. Ding, Y. X. Ding, Tetrahedron 2008, 64, 10507-10511; c) J. Yan, Q. Li, J. A. Boutin, M. P. Renard, Y. Ding, X. Hao, W. Zhao, M. Wang, Acta Pharmacol. Sin. 2008, 29, 752-758; d) S. Park, B. Seo, S. Shin, J.-Y. Son, P. H. Lee, Chem. Commun. 2013, 49, 8671-8673; e) D. Zhao, C. Nimphius, M. Lindale, F. Glorius, Org. Lett. 2013, 15, 4504-4507.
- [11] Examples include: a) J. W. Darrow, D. G. Drueckhammer, Bioorg. Med. Chem. 1996, 4, 1341-1348; b) D. J. Tantillo, K. N. Houk, J. Org. Chem. 1999, 64, 3066-3076; c) V. Ferro, L. Weiler, S. G. Withers, H. Ziltener, Can. J. Chem. 1998, 76, 313-318; d) H. Kakinuma, K. Shimazaki, N. Takahashi, K. Takahashi, S. Niihata, Y. Aoki, K. Hamada, H. Matsushita, Y. Nishi, Tetrahedron 1999, 55, 2559-2572; e) M. Mikolajczyk, P. Balczewski in New Aspects in Phosphorus Chemistry II (Ed.: D. J. P. Majoral), Springer, Berlin, 2003, pp. 161-214; f) A. Y. Peng, Y. X. Ding, J. Am. Chem. Soc. 2003, 125, 15006-15007; g) B. Li, B. Zhou, H. Lu, L. Ma, A.-Y. Peng, Eur. J. Med. Chem. 2010, 45, 1955-1963; h) J. W. McGrath, J. P. Chin, J. P. Quinn, Nat. Rev. Microbiol. 2013, 11, 412-419; i) J. J. Shie, J.-M. Fang, J. Chin. Chem. Soc. 2014, 61, 127-141.
- [12] Examples include: a) C. Y. Hong, S. H. Kim, Y. K. Kim, *Bioorg Med. Chem. Lett.* 1997, 7, 1875–1878; b) Y. Oshiro, S. Sato, N. Kurahashi, T. Tanaka, T. Kikuchi, K. Tottori, Y. Uwahodo, T. Nishi, *J. Med. Chem.* 1998, 41, 658–667; c) T. S. Harrison, C. M. Perry, *Drugs* 2004, 64, 1715–1736; d) S. Heeb, M. P. Fletcher, S. R. Chhabra, S. P. Diggle, P. Williams, M. Cámara, *FEMS Microbiol. Rev.* 2011, 35, 247–274; e) G. A. Lemieux, J. Liu, N. Mayer, R. J. Bainton, K. Ashrafi, Z. Werb, *Nat. Chem. Biol.* 2011, 7, 206–213.
- [13] S. Bhagat, A. K. Chakraborti, J. Org. Chem. 2007, 72, 1263– 1270.
- [14] E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007-2010.
- [15] Crystallographic data for **10j**: $C_{25}H_{19}N_2O_2P$, M = 410.39, $0.17 \times$ 0.16×0.12 mm, T = 173(2) K, Monoclinic, space group $P2_1/c$, a =11.0967(14) Å, b = 9.6020(13) Å, c = 19.319(2) Å, $\beta = 90.982(4)^{\circ}$, $V = 2058.2(5) \text{ Å}^3, Z = 4, \rho_{\text{cald}} = 1.324 \text{ Mg m}^{-3}, \mu = 0.158 \text{ mm}^{-1},$ $F(000) = 856, 2\theta_{\text{max}} = 50.0^{\circ}, 22128 \text{ reflections}, 3633 \text{ independent}$ reflections $[R_{int} = 0.0525]$, R1 = 0.0428, wR2 = 0.0921 and GOF = 1.024 for 3633 reflections (347 parameters) with $I > 2\sigma$ (I), R1 = 0.0763, wR2 = 0.1078 and GOF = 1.024 for all reflections, max/min residual electron density $+0.290/-0.311 \text{ e}\,\text{Å}^{-3}$. Crystallographic Data for **11j**: $C_{19}H_{15}N_2O_2P$, M = 334.30, $0.12 \times$ 0.09×0.04 mm, T = 223(2) K, Triclinic, space group P-1, a =8.4050(3) Å, b = 10.5908(4) Å, c = 20.2049(7) Å, $\alpha = 103.100$ -(2)°, $\beta = 94.314(3)$ °, $\gamma = 109.365(2)$ °, V = 1630.36(11) Å³, Z = 4, Z' = 2, $\rho_{cald} = 1.362 \text{ Mg m}^{-3}$, $\mu = 1.607 \text{ mm}^{-1}$, F(000) = 696, $2\theta_{\text{max}} = 134.32^{\circ}$, 18307 reflections, 5681 independent reflections $[R_{int} = 0.0529]$, R1 = 0.0544, wR2 = 0.1447 and GOF = 1.050 for 5681 reflections (553 parameters) with $I > 2\sigma(I)$, R1 = 0.0738, wR2 = 0.1576 and GOF = 1.050 for all reflections, max/min residual electron density +0.742/-0.441 e Å⁻³. CCDC 1416795 and 1416794 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data request/cif.
- [16] W. C. Marsh, J. Trotter, J. Chem. Soc. A 1971, 169–173.
- [17] M. Ikbal, R. Banerjee, S. Atta, A. Jana, D. Dhara, A. Anoop, N. D. P. Singh, *Chem. Eur. J.* **2012**, *18*, 11968–11975.

- [18] R. Hirschmann, K. M. Yager, C. M. Taylor, J. Witherington, P. A. Sprengeler, B. W. Phillips, W. Moore, A. B. Smith, J. Am. Chem. Soc. **1997**, 119, 8177 – 8190.
- [19] S. E. Krikorian, J. Phys. Chem. 1982, 86, 1875-1881.
- [20] W. L. Jorgensen, J. Pranata, J. Am. Chem. Soc. 1990, 112, 2008 –
- [21] J. Sartorius, H.-J. Schneider, Chem. Eur. J. 1996, 2, 1446-1452.
- [22] W. M. F. Fabian, K. S. Niederreiter, G. Uray, W. Stadlbauer, J. Mol. Struct. 1999, 477, 209-220.
- [23] J. F. Araneda, W. E. Piers, B. Heyne, M. Parvez, R. McDonald, Angew. Chem. Int. Ed. 2011, 50, 12214-12217; Angew. Chem. **2011**, *123*, 12422 – 12425.
- [24] G. Uray, K. S. Niederreiter, F. Belaj, W. M. F. Fabian, Helv. *Chim. Acta* **1999**, *82*, 1408–1417.

Received: August 17, 2015 Revised: August 24, 2015

Published online: September 11, 2015

13322